10.4 Area of Sectors

A sector of a circle is a region bounded by a central angle and its intercepted arc. In the circle below $\angle AOB$ is a central angle measuring 80° . Therefore, \widehat{AB} is 80° . $\angle AOB$ and \widehat{AB} form a sector of the circle.

Example 5: Find the area of the sector formed by $\angle AOB$ and \widehat{AB} .

Step 1: The area of a sector is a fraction of the area of the circle. First, we must find the approximate area of the circle.

$$A = \pi r^2$$

$$A\approx 3.14\times 10^2\approx 3.14\times 100\approx 314~\mathrm{cm^2}$$

Step 2: Now we need to find the fraction of the circle that the sector occupies. Remember that the sum of the measures of the central angles of a circle is 360. The fraction that the sector occupies is the measure of the central angle, denoted by the letter N, divided by 360.

Fraction that sector occupies
$$=\frac{N}{360} = \frac{80}{360} = \frac{2}{9}$$

Step 3: Now we can calculate the approximate area of the sector.

$$A = \frac{N}{360}\pi r^2 \approx \frac{2}{9} \times 3.14 \text{ cm}^2 \times 10^2 \approx \frac{628}{9} \text{ cm}^2$$

Simplified, $A \approx 69\frac{7}{9} \text{ cm}^2$

Each of the following is a measurement for a central angle. Calculate the fraction of a circle that the central angle occupies. Simplify your answers.

Find the area of the sector bounded by $\angle XYZ$ and \widehat{XZ} in each of the following circles. Use $\pi \approx 3.14$.

13.

14.

15.

16.

